
Design of New DASPK for Sensitivity

Analysis ∗

Shengtai Li and Linda Petzold

Abstract

A new version of DASPK, DASPK3.0, with capability for sensitivity analysis is pre-

sented in this report. DASPK3.0 differs from the sensitivity code DASPKSO, described

in [12], in several ways. DASPK3.0 has all the features, which were not available in

DASPKSO, of the previous version DASPK2.0. One of these features is an improved

algorithm for calculation of consistent initial conditions for index-zero or index-one

systems. DASPK3.0 also incorporates a mechanism for initialization and solution of

index-2 systems. Other improvements in DASPK3.0 include a more accurate error and

convergence test, particularly for the sensitivity analysis. We implemented the Krylov

method for sensitivity computation with a different strategy from DASPKSO, and made

it more efficient and easier for parallel computing. We also added the staggered correc-

tor method [7] for both the direct and Krylov method. We implemented the sensitivity

analysis with an internal parallel mode, which is easy to use for both serial and parallel

computation with message passing interface (MPI). We also incorporated automatic dif-

ferentiation into DASPK3.0 to evaluate the Jacobian matrix and sensitivity equations.

The goal of our design has been to be compatible as much as possible with DASPK2.0,

to minimize memory and storage requirements for sensitivity analysis, and to speed up

the computation for a large number of sensitivity parameters.

∗This work was partially supported by DOE contract number DE-FG03-98ER25354, NSF grant CCR-

9896198, NSF/DARPA grant DMS-9615858, and LLNL ISCR 99-006.

1

1 Introduction

This paper is concerned with the solution and sensitivity analysis of initial value problems

for differential-algebraic equation systems (DAEs) in the general form

F (t, y, y′) = 0, (1)

where F , y, and y′ are N -dimensional vectors. Two software packages have been written

for solving initial value problems for the DAE system (1) —DASSL [13], and an extension

of it called DASPK [3]. Both use variable-order variable-stepsize backward differentiation

formulas. DASSL solves the linear systems that arise at each time step by dense or banded

direct linear system methods. In DASPK, the linear systems that arise at each time step are

solved with either direct linear system methods, or with a preconditioned Krylov iterative

method, namely GMRES [16]. For large-scale systems, the iterative method combined with

a suitable preconditioner can be quite effective.

Sensitivity analysis of DAEs is important in many engineering and scientific applications.

The information contained in the sensitivity trajectories is useful for parameter estimation,

optimization, model reduction and experimental design. The sensitivity equations for the

DAEs have many good properties which can be taken advantage of. First they are linear with

respect to the sensitivity variables. Second, the Jacobian matrix for the sensitivities is the

same as for the original DAEs. Several methods and codes have been designed in the last

decade to compute sensitivities for DAEs [12, 5]. DASPKSO [12] is one of them. It solves for

the state variables and the sensitivity variables simultaneously in the nonlinear corrector step.

This implementation is called the simultaneous corrector method. Since the DASPKSO code

was designed based on the first version, DASPK1.0, of DASPK, it did not include the new

mechanism [4] to calculate consistent initial conditions for index-0 or 1 DAEs. We rewrote it

and incorporated the features of the newer version, DASPK2.0, of DASPK.

The Krylov method in DASPKSO solves a large linear system, which consists of both the

state variables and sensitivity variables, at each Newton iteration. Sensitivity equations are

evaluated at each linear iteration in the Krylov method. This implementation was difficult to

parallelize and to incorporate the staggered corrector method, which we will talk about later.

In DASPK3.0, we implement the Krylov method in a different way: the large linear system is

split into several smaller linear systems with the same Jacobian matrix derived from the state

variables. This method not only reduces the storage requirement for the Krylov iteration but

also improves the efficiency.

2

When we solve for the sensitivity and state variables together, it is easy to take them as

one whole vector in the error and convergence control. However, because DASPK2.0 uses the

root-mean-square (RMS) norm, the accuracy of the state variables can be affected by errors in

the sensitivity variables. In our new implementation, we evaluate the RMS norm separately

for the state variables and for the sensitivities with respect to each parameter. We use the

maximum of these norms in making decisions in the code.

More recently, the staggered correctormethod [7] has been proposed. This method does not

solve for the state variables and sensitivities simultaneously in the corrector step. Instead, on

each time step, it solves for the state variables first and then solves for the sensitivity variables.

This method has proven to be more efficient than the simultaneous corrector method for most

problems. We implemented this method in DASPK3.0 to compute the sensitivities for both

the direct method and the Krylov method.

In either of the solvers DASSL, DASPK or their sensitivity analysis solvers DASSLSO and

DASPKSO, finite differencing (forward or central) is chosen as the default method to evaluate

the Jacobian matrix for the direct method, the matrix-vector product in the Krylov iteration,

and the residuals for the sensitivity equations in case exact input is not available. For most

well-scaled and smooth problems, the results using the finite differencing are nearly as good

as for exact input. However, for some badly-scaled problems, finite-differencing cannot get

accurate results for the sensitivities. For some strongly nonlinear problems, exact input of the

Jacobian in the direct method can greatly improve the accuracy and efficiency. The automatic

differentiation tool ADIFOR [1] can generate a subroutine to compute the Jacobian matrix

with accuracy up to round-off error. In our experience, ADIFOR-generated derivative code

usually outperforms divided-difference approximations. In DASPK3.0, we provide an option

to use ADIFOR to compute the derivatives. We embed the ADIFOR-generated routine in

such a way that the previous user interface is not altered very much.

Each sensitivity is independent of the others in sensitivity analysis, which is ideal for

parallel computation. Several parallel implementations for the sensitivity analysis of DAEs

were compared in [15]. The distributed parameter only (DPO) method proved to be the

most efficient one in [15]. However, the DPO method as implemented in [15] requires the

user to distribute the parameters to each processor and to define a different problem for

sensitivity analysis in each processor before calling the DASPK program, which is error-prone

and difficult for an inexperienced user. In DASPK3.0, the sensitivities and parameters are

distributed automatically to each processor. The problem (residual routine in DASPK) is

defined only once and is the same for all the processors. Synchronization at the output time

3

or on the same stepsize can be achieved easily, with minimal communication overhead. We

use the portable message passing interface (MPI) in our parallel implementation.

Most of the functionality we added in DASPK3.0 is only for the sensitivity analysis.

However, our design is compatible with the previous version of DASPK. We appended two

arguments in the argument list of DASPK2.0: one for the sensitivity parameters and one for

the ADIFOR-generated routine for the sensitivity equations. They can be removed or treated

as dummies if not used. Since variable argument lists are valid on most platforms, codes that

use the previous version DASPK2.0 should work in our new version as long as the size of

INFO(*) is increased to at least 27.

2 Background

2.1 DASSL and DASPK1.0

DASSL was developed by Petzold [13] and has become one of the most widely used production

codes for DAEs at this time. DASSL uses backward differentiation formula (BDF) methods [2]

to solve a system of DAEs or ODEs. The methods are variable step-size, variable order. The

system of equations in DASSL is written in implicit ODE or DAE form as in (1). Following

discretization by the BDF methods, a nonlinear equation

F (t, y, αy + β) = 0 (2)

must be solved at each time step, where α = α0/hn is a constant which changes whenever

the stepsize or order changes, β is a vector which depends on the solution at past times, and

t, y, α, β are evaluated at tn. To simplify the discussion, we will sometimes refer to the above

function as F (y). DASSL solves this equation by a modified version of Newton’s method,

y(m+1) = y(m) − c

(

α
∂F

∂y′
+
∂F

∂y

)−1

G(t, y(m), αy(m) + β). (3)

The linear system is solved via a dense or banded direct solver in DASSL. The iteration matrix

A = α
∂F

∂y′
+
∂F

∂y

is computed and factored and is then used for as many time steps as possible. The reader

can refer to [13] for more implementation details.

4

DASPK1.0 was developed by Brown, Hindmarsh and Petzold [3] for the solution of large-

scale systems of DAEs. It is particularly effective in the method-of-lines solution of time-

dependent PDE systems in two and three dimensions. In contrast to DASSL, which is limited

in its linear algebra to dense and banded systems, DASPK1.0 has an option to make use of

the preconditioned GMRES iterative method for solving the linear system at each Newton

iteration. Here we describe some of the basic features of the DASPK algorithm. Further

details on the structure and use of DASPK1.0 and on a class of preconditioners for DAE

systems for reaction-diffusion type PDE problems can be found in [3].

DASPK1.0 also has an option to use direct methods, which is virtually identical to using

DASSL. In the case of DASPK with iterative methods, a preconditioner matrix P , which is

an approximation to A that leads to a cheap linear system solution, is computed and factored

and used for as many time steps as possible. It is often possible to use a preconditioner

over more steps than it would be possible to keep an iteration matrix in the direct methods,

because the iterative methods do the rest of the work in solving the system. One of the

powerful features of the iterative approach is that it does not need to compute and store the

iteration matrix A explicitly in DASPK. This is because the GMRES method never actually

needs the matrix explicitly1. Instead, it requires only the action of A times a vector v. In

DASPK, this matrix-vector product is approximated via a difference of the function F in (2)

Av = F ′(y)v '
F (t, y + σv, α(y + σv) + β)− F (t, y, αy + β)

σ
. (4)

The GMRES algorithm requires the product Av in which v is a vector of unit length (the

norm is a WRMS norm) and y is the current iterate. We note that because y is current in (4),

this amounts to taking a full Newton iteration in the iterative option of DASPK (rather than

modified Newton, as in DASSL and the direct option of DASPK). In fact, for some highly

nonlinear problems we have seen the iterative option in DASPK outperform the direct option

in terms of time steps, corrector failures, etc., apparently for this reason.

In DASPK, the iterative option requires the user to provide a preconditioner P . This is

in part because the Newton iteration test, and hence ultimately the code reliability, is not

justified without a reasonably accurate preconditioner. It is also because any nontrivial DAE

needs a preconditioner. Several preconditioners are provided in [4] for method-of-lines solution

of PDEs. One of them is the incomplete LU factorization (ILU) preconditioner, which can be

used for any sparse linear system.

1Depending on the preconditioner, it may need to compute and store a preconditioner matrix explicitly.

We hope that this matrix is much cheaper to generate and to store than the actual iteration matrix.

5

2.2 Consistent initial condition calculation and DASPK2.0

When using either of the solvers DASSL or DASPK, the integration must be started with a

consistent set of initial conditions y0 and y
′
0. The present DASSL, DASPKSO, and old version

DASPK (DASPK1.0, released before 1996) solvers offer an option for finding consistent y ′0

from a given initial y0, by taking a small artificial step with the backward Euler method.

However, initialization problems do not always arise in this form, and even for the intended

problem type, that technique is not always successful. In any case it is unsatisfactory in that

it produces values at t = t0 + h (h=stepsize) rather than at t = t0. In [4], a new algorithm

was proposed to calculate the consistent initial conditions for index-one DAEs. Two types

of initialization problem have been solved and the algorithm converges nearly as rapidly as

the underlying Newton or Newton-Krylov method. The new method is very convenient for

the user, because it makes use of the Jacobian or preconditioner matrices which are required

in DASSL or DASPK. We call it DASPK2.0 because of its difference from DASPK1.0 in

consistent initial condition calculation.

The new initialization technique is applicable to two classes of index-1 initialization prob-

lems. Initialization problem I is posed for systems of the form

f(t, u, v, u′) = 0,

g(t, u, v) = 0, (5)

where u, f ∈ RNd and v, g ∈ RNa , with the matrices fu′ = ∂f/∂u′, gv = ∂g/∂v square and

nonsingular. The problem is to find the initial value v0 of v when the initial value u0 for u is

specified. Hence it is required for the user to specify which variables are algebraic and which

are differential.

In initialization problem II, which is applicable to the general index-1 system (1), the

initial derivatives are specified but all of the dependent variables are unknown. That is,

we must solve for y0 given y′0. For example, beginning the DAE solution at a steady state

corresponds to specifying y′0 = 0.

The idea motivating DASPK2.0 is to solve both of these initial condition problems with

the help of mechanisms already in place for the solution of the DAE system itself, rather than

requiring the user to perform a special computation for it. This idea is also used to develop

the initialization algorithm for index-2 systems described in Section 4. A detailed description

of the algorithm and convergence theory has been provided in [4].

6

3 Sensitivity analysis of DAEs

Sensitivity analysis of a DAEmodel may yield information useful for parameter estimation, op-

timization, process sensitivity, model reduction, and experimental design. Several approaches

have been developed to calculate sensitivity coefficients. A sensitivity analysis capability has

been developed by Maly and Petzold [12], and implemented into DASSL and DASPK1.0,

yielding two new codes DASSLSO and DASPKSO. Here we summarize the algorithms used

by the sensitivity option in DASSLSO and DASPKSO, and other proposed sensitivity analysis

methods. Further detail about the codes and some numerical results can be found in [12].

To illustrate the basic approach for sensitivity analysis, consider the general DAE system

with parameters,

F (t, y, y′, p) = 0, y(0) = y0 (6)

where y ∈ Rny , p ∈ Rnp . Here ny is the number of time-dependent variables y as well as

the dimension of the DAE system, and np is the number of parameters in the original DAE

system. Sensitivity analysis entails finding the derivative of the solution y with respect to

each parameter. This produces an additional ns = np ·ny sensitivity equations which, together

with the original system, yield

F (t, y, y′, p) = 0,

∂F

∂y
si +

∂F

∂y′
s′i +

∂F

∂p
= 0, i = 1, ..., np, (7)

where si = dy/dpi. Defining

Y =



















y

s1

...

snp



















, F =



















F (t, y, p)
∂F
∂y
s1 +

∂F
∂y′
s′1 +

∂F
∂p1

...
∂F
∂y
snp
+ ∂F

∂y′
s′np
+ ∂F

∂pnp



















the combined system can be rewritten as

F(t, Y, Y ′, p) = 0, Y (0) =



















y0

dy0

dp1

...
dy0

dpnp



















.

This system can be solved by the k-th order BDF formula with step size hn+1 to yield a

nonlinear system

G(Yn+1) = F

(

tn+1, Yn+1, Y
′(0)
n+1 −

αs

hn+1

(Yn+1 − Y
(0)
n+1), p

)

= 0, (8)

7

where Y
(0)
n+1 and Y

′(0)
n+1 are predicted values for Yn+1 and Y

′
n+1, which are obtained via polyno-

mial extrapolation of past values [2]. Also, αs is the fixed leading coefficient which is defined

in [2]. Newton’s method for the nonlinear system produces the iteration

Y
(k+1)
n+1 = Y

(k)
n+1 − J−1G(Y

(k)
n+1),

where

J =

























J

J1 J

J2 0 J
...

...
...
. . .

Jnp
0 · · · 0 J

























(9)

and

J = α
∂F

∂y′
+
∂F

∂y
, Ji =

∂J

∂y
si +

∂J

∂pi

and α = αs/hn+1.

A number of codes for ODEs and DAEs solve the sensitivity system (7), or its special case

for ODEs, directly (see [5]). If the partial derivative matrices are not available analytically,

they are approximated by finite differences. There are three well-established methods to solve

the nonlinear system (8):

• Staggered direct method, described in [5].

• Simultaneous corrector method, described in [12].

• Staggered corrector method, described in [7].

An analysis and comparison of the performance for these three methods has been given in

[7]. A detailed comparison of these methods applied to a special problem is also given in [15].

Here we discuss briefly the performance of the three methods.

The staggered direct method first solves equation (8) for the state variables. After the

Newton iteration for the state variables has converged, the sensitivity equations in (8) are

updated with the most recent values of the state variables. Because equation (8) is linear

with a matrix J for the sensitivity equations, it is solved directly without Newton iteration.

However, to solve the linear system in this way requires computation and factorization of the

Jacobian matrix at each step and also extra storage for the matrix ∂F/∂y ′. Since the Jacobian

is updated and factorized only when necessary in DASPK, the additional matrix updates

8

and factorizations make the staggered direct method unattractive compared to the other

methods. However, if the cost of a function evaluation is more than the cost of factorization

of the Jacobian matrix, the staggered direct method is more efficient. We have modified the

implementation of [5] to make the staggered direct method more reliable for ill-conditioned

problems.

The simultaneous corrector method solves (8) as one whole nonlinear system, where New-

ton iteration is used. The full Jacobian matrix J in (9) is actually not computed. Instead,

it is approximated by its block diagonal in the Newton iteration. Thus, this method allows

the factored corrector matrix to be reused for multiple steps. It has been shown in [12] that

the resulting iteration is two-step quadratically convergent for full Newton, and convergent

for modified Newton iteration.

The staggered corrector method is similar to the staggered direct method. However,

instead of solving the linear sensitivity system directly, a Newton iteration is used

s
(k+1)
i = s

(k)
i − J−1Gsi

(s
(k)
i), (10)

where Gsi
is the residual for the i-th sensitivity and J is the factored Jacobian matrix which is

used in the Newton iteration for the state variables. Like the simultaneous corrector method,

this method does not require the factorization of the Jacobian matrix at each step, and

is a significant improvement over the staggered direct method. One of the advantages of

the staggered corrector method is that we do not need to evaluate the sensitivity equations

during the iteration of solving for the state variables. This can reduce the computation time

if the state variables require more iterations than the sensitivity variables. After solving for

the state variables in the corrector iteration, only the diagonal part of J in (9) is left. We

can expect the convergence of the Newton iteration will be improved over that of using an

approximate iteration matrix in the simultaneous corrector method. This has been observed

in our numerical experiments.

Methods for evaluating sensitivity residuals

Several approaches have been developed to calculate the sensitivity residuals that may be

used with either the staggered corrector or the simultaneous corrector methods. Maly and

Petzold [12] used a directional derivative finite difference approximation. For example, the

ith sensitivity equation may be approximated as

F (t, y + δisi, y
′ + δis

′
i, p+ δiei)− F (t, y, y′, p)

δi

= 0, (11)

9

where δi is a small scalar quantity, and ei is the ith unit vector. Proper selection of the

scalar δi is crucial to maintaining acceptable round-off and truncation error levels, which was

discussed in [12]. If F (t, y, y′, p) is already available from the state equations, which is the

case in the Newton iteration of DASPK, (11) needs only one function evaluation for each

sensitivity. The main drawback of this approach is that the accuracy of the method is hard

to analyze. The smaller the perturbation δi, the lower the truncation error resulting from the

omission of higher order terms, but the higher the loss-of-significance errors resulting from

subtracting two nearly equal numbers. It is also hard to select a δi that is appropriate for all

the variables for a badly scaled problem, because y, y′ and p may have different scalings.

Recently, Alan Hindmarsh [10] proposed a different method to select the increment δi for

equation (11). In [12],

δi = ∆max(|pi|, ||vi||2) (12)

where ∆ is a scale factor, and

vi =
(

WT j/WT iny+j : j = 1, ..., ny

)

.

The problem with (12) is that when some sj
i is large, WT iny+j will be large and vj

i will be

small. However, ||vi||2 might be large if v
k
i is large for some k. The perturbation δisi will be

too large for the finite difference approximation. The new method proposed by Hindmarsh is

to replace ||vi||2 in (12) with 1/||ui||2, i.e.

δi = ∆max(|pi|, 1/||ui||2) (13)

where

ui =
(

WT iny+j/WT j : j = 1, ..., ny

)

.

If some sj
i is large, WT iny+j will be large and uj

i will be large. Then 1/||ui||2 will definitely

be small, leading to a more appropriate δisi. This is the increment selection strategy that we

use in DASPK3.0.

Another approach is to evaluate the sensitivity residuals analytically by ADIFOR or other

automatic differentiation methods. If ADIFOR with the seed matrix approach is used, which

we will discuss in Section 6, we can avoid evaluating the Jacobians ∂F/∂y, ∂F/∂y ′ and

∂F/∂p, and the matrix-vector product in (7). The equations for each sensitivity in (7) can

be evaluated as one matrix-vector product in ADIFOR, which can substantially improve the

efficiency.

Another approach is to evaluate the sensitivity equations in (7) directly. First the Jacobian

(∂F/∂y, ∂F/∂y′) is evaluated. Then two matrix-vector products and two vector additions in

10

(7) are performed. This method was suggested as the most desirable method by [7]. However,

as we will see in Section 7, it is more efficient than ADIFOR with the seed matrix option

only in certain circumstances, which depends on the cost of evaluation of ∂F/∂p. ∂F/∂p can

be evaluated either analytically (including the automatic differentiation method) or by finite

difference, e.g.
∂F

∂p
=

F (t, y, y′, p+ δiei)− F (t, y, y′, p)

δi

. (14)

Although (14) is similar to (11), the scaling problem is easy to resolve because only one

parameter p requires scaling. However, (11) is less costly than (14) plus two matrix-vector

products. Hence the directional derivative approach is the preferred method if the scaling of

y′, y and p is not an issue.

4 Consistent initial condition calculation for sensitivity

analysis

In this section, we first extend the initialization algorithm of [4] to the sensitivity equations.

Then we propose a simple algorithm to compute the consistent initial conditions for index-2

systems.

4.1 Consistent initial conditions for index-one problems

Suppose there is a parameter p in equation (5). The sensitivity problem becomes

f(t, u, v, u′, p) = 0,

g(t, u, v, p) = 0,

∂f

∂u
su +

∂f

∂v
sv +

∂f

∂u′
su′ +

∂f

∂p
= 0, (15)

∂g

∂u
su +

∂g

∂v
sv +

∂g

∂p
= 0.

The algebraic variables in equation (5) generate algebraic sensitivity variables in equation

(15). Equation (15) also has the same index as (5).

Sensitivity has been used in optimization problems that require the derivatives with respect

to the constraints, which are given by differential equations. Such an optimization problem

can be formulated as

y′ = F (t, y, p), y(t0) = y0,

11

∫ tmax

t0

Φ(t, y(t), p)dt is minimized,

g(t, y(t), p) ≥ 0.

This problem can be solved by an optimization code, e.g., SNOPT [8], which is based on

sequential quadratic programming (SQP) methods. The SQP methods require a gradient and

Jacobian matrix which are derivatives of the objective function and of the constraints with

respect to the optimization variables. DASPKSO has been used to compute these derivatives

[14]. One of the difficulties for the optimization problems is that the solution output from the

optimizer does not satisfy the consistent initial conditions required by DASPK. The consistent

initial conditions must be computed first before we start the next time step. An initialization

algorithm for equation (5) can be used for this purpose.

There are two approaches to compute consistent initial conditions for the sensitivity analy-

sis. One approach is to treat the sensitivity and state variables in the same way, and take them

as one whole vector in the initialization computation. In this case, the sensitivity variables

and state variables will be solved simultaneously during the initialization. Because algebraic

state variables generate algebraic sensitivity variables, and differential state variables generate

differential sensitivity variables, the user does not need to indicate which sensitivity variables

are algebraic and which are differential. As we have done for the simultaneous corrector

method, we use an approximate Jacobian (the diagonal blocks of the exact Jacobian) for this

approach. That’s why the nonlinear system may not converge for some problems.

The other approach is to compute the consistent initial conditions first for the state vari-

ables, and then for the sensitivity variables. This staggered approach usually converges faster

than the first approach. Because an exact Jacobian for the sensitivities is used, this approach

may solve problems that the first approach fails to solve.

We assume in our implementation that the sensitivity variables fall into the same class of

initialization problems as the state variables. Both approaches are included in DASPK3.0.

We recommend using the staggered approach if sensitivity is considered.

In DASPK3.0, we made two improvements over the algorithm of [4]. The first improvement

is to compute the actual Jacobian for initialization problem I instead of using an approximate

one as in [4]. This is because the the approximate Jacobian usually requires the initial

artificial time step to be reduced several times to minimize the effect of unwanted part in

∂F/∂y. Evaluation of the actual Jacobian can be easily done with the available information

in DASPK, via either finite difference or automatic differentiation. With the actual Jacobian,

the initialization problem I becomes solving a nonlinear system which does not require any

12

time-step information. However, we have included as an option the original implementation

of [4] in case the Jacobian has been input by the user.

The other improvement is to evaluate the norm of the error only for the unknown variables.

DASPK2.0 evaluated the norm of J−1r, where J = 1
h
∂F/∂y′ + ∂F/∂y is the Jacobian and r

is a vector of the error residuals, in the convergence test. This works fine during integration

because y is the unknown variable. For initialization problem I, the error for y ′ should be

scaled by 1/h and it may not satisfy the error tolerance. For example, given an equation

y′ = 0.1, the norm of the error in DASPK2.0 is J−1r = 0.1h, which might satisfy the error

tolerance when h is small, which means that y′ might never get updated. However, the actual

norm of the error for the unknown variable y′ is 0.1. This has been fixed in DASPK3.0 by

modifying the norm evaluation in the initializations.

4.2 Consistent initial conditions for index-two problems

With partial error control (excluding the algebraic variables from the error control), DASPK

can solve Hessenberg index-2 problems with given consistent initial conditions. However,

consistent initial conditions may not be readily available in many cases. The initialization

method for index-one systems in DASPK2.0 [4] will not work for index-2 problems. Taking

the Hessenberg index-2 problem as an example,

u′ = f(t, u, v),

0 = g(u), (16)

given the initial guess (u′0, u0, v0), we cannot fix u0 and calculate only u
′
0 and v0 as for the

index-one system if g(u) = 0 is not satisfied.

The objective for index-2 initialization is to compute a new triple (û′0, û0, v̂0) that satisfies

the constraints and consistent initial conditions. Since there are three unknown variables but

only two equations, the problem is under-determined. In most cases, we are interested in

finding the closest u to u0, i.e.,

min{||u− u0||
2 | g(u) = 0}, (17)

which becomes an optimization problem with equality constraints. (17) can be solved easily

by many optimization methods. If it is solved by an SQP method, the following iteration is

used,

ui − u0 + δui + gu(ui)
T (λi + δλi) = 0,

13

g(ui) + gu(ui)δui = 0, (18)

where ui, λi are the current values for the solution u and Lagrange multiplier λ, and δui and

δλi are the increments for the next iteration. The iteration matrix for (18) is





I gT
u

gu 0



 , (19)

which should be evaluated at each iteration. Although this method yields the closest ini-

tial conditions which satisfy the constraints, it is not efficient to implement in the DASPK

environment. The difficulty is that the iteration matrix (19) is not available in DASPK. An-

other problem is that the solution computed by solving (17) may not satisfy other hidden

constraints which are derived from the equations. In this sense, it may not be optimal.

Following the idea of [4] for index-1 problems, we attempt to solve the consistent initial-

ization problem with the help of mechanisms that already exist in the DASPK solver. We

search for the consistent initial conditions in the direction given by the differential equations.

This method has a potential advantage that the hidden constraints derived from the equations

may also be satisfied. To do that, we should increment the derivative u′ by 1
h
δu if the solution

u is incremented by δu. Consider a general DAE system,

F (t, u, u′, v) = 0. (20)

After introducing two new variables δu and δv and an artificial time step h, we transform

equation (20) into

F (t, u0 + δu, u′0 +
1

h
δu, v0 + δv) = 0. (21)

δu and δv in (21) can be solved by Newton iteration with initial values of zero. The iteration

matrix is

J = (
1

h
Fu′ + Fu, Fv), (22)

which is just the iteration matrix computed in DASPK. In DASPK, h is chosen to be the

initial stepsize that satisfies the error tolerance for a zeroth order method.

It is easy to fix some of the differential variables in (21). However, fixing a differential

variable u does not imply fixing the derivative u′ in our algorithm, and vice versa. For

example, if we fix the first element u01 of the vector u in (21), the equation becomes

F (t, u01, u0r + δur, u
′
0 +

1

h
δu, v0 + δv) = 0,

14

where u0r is the rest of u (excluding u01), and δur is the rest of δu (excluding δu1). In

the algorithm of [4] for initialization problem I, all of the differential variables are fixed and

equation (21) becomes

F (t, u0, u
′
0 +

1

h
δu, v0 + δv) = 0. (23)

The initialization problem II in [4] can also be cast into (21) by fixing all of the derivatives

u′, which yields

F (t, u0 + δu, u′0, v0 + δv) = 0.

As mentioned in [4], the iteration matrix for (21) depends on which variables or derivatives

have been fixed. The structure of the problem and of the Jacobian determines which variables

or derivatives can be fixed. For index-0 and index-1 systems, when h is small in some appro-

priate sense and no derivatives have been fixed, the matrix computed by DASPK was shown

in [4] to be a good approximation to the exact iteration matrix. If some of the derivatives

have been fixed, the iteration matrix can change a lot or may even become singular. If all of

the derivatives are fixed, as in initialization problem II in [4], the iteration matrix is computed

in DASPK by setting CJ=0.

For the Hessenberg index-2 system (16), if no variables or derivatives are fixed, the iteration

matrix is

J =





1
h
I − fu −fv

gu 0



 , (24)

which is just the iteration matrix computed in DASPK. In practice, we usually scale the

bottom rows gu of the matrix (24) by 1/h (see [2]), which yields

hĴ =





I − hfu −hfv

gu 0



 . (25)

This approach is similar to taking a small artificial time step with the backward Euler method

except that the time is always fixed during the initialization. The stepsize h may be so small

sometimes that it cannot reach the consistent initial conditions. Therefore, if the nonlinear

system fails to converge, we should increase h rather than decrease it. This approach is used

only when we update both the variables and derivatives. It is not applied to initialization

problems I and II, where reducing the time step is used.

If the constraint g(u) = 0 is satisfied, all of the differential variables can be fixed, and

equation (23) becomes

δu′ + u′0 = f(t, u0, v0 + δv),

0 = g(u0). (26)

15

where δu′ = 1
h
δu. Since δu′ and δv are not related to g(u0), the iteration matrix for (26)

is singular, which means the solution is not unique. However, we can replace the constraint

equation in (26) with guu
′ = 0, which yields

δu′ + u′0 = f(t, u0, v0 + δv),

0 = gu(u0)(δu
′ + u′0), (27)

with iteration matrix

hJ =





I −hfv

gu 0



 . (28)

Matrix (28) can be approximated by (25) when h is small in some appropriate sense (see

Theorem 4.1 in [4]). However, because the condition number of (28) is proportional to 1/h,

reducing the time step h will increase the round-off error. We observed in some problems that

the nonlinear system (27) failed to converge with the approximate Jacobian (25) no matter

how small h is. In those cases, the exact Jacobian (28) should be used. We actually use

(28) inside DASPK3.0 for the Newton iteration of this initialization problem. The algebraic

variables solved by this method also satisfy the derived constraint guf(u, v) = 0.

It is easy to evaluate the first equation in (27) by function evaluations in DASPK. However,

the second equation is not available to DASPK. To evaluate it requires the user to specify

which equations are algebraic. We can avoid evaluating guu
′ = 0 if f(t, u, v) is a linear system

with respect to v. Note that if system (27) is linear with respect to u′ = δu′ + u′0 and

v = v0 + δv, it has a unique solution for u′ and v. The u′ and v can be solved via only one

iteration for a linear system, independent of the initial values. If we set u′0 = 0 and δu
′ = 0

in our first guess, the value of the second equation in (27) is zero, which is also the result of

g(u0). Therefore, the residual evaluations in DASPK can be used without modification. If

f(t, u, v) is not linear with respect to v, then it might take more than one iteration to solve

for u′ and v. Since guu
′ might not be zero during the intermediate iterations, guu

′ must be

evaluated in addition to the residual evaluations of DASPK.

In most applications from mechanical systems, v is a Lagrange multiplier and f(t, u, v) is

linear in v. The method without evaluating guu
′ can be used with a fixed initial value u′0 = 0.

If f(t, u, v) is not linear with respect to v, the user can either evaluate the guu
′ in the residual

routine or specify which equations are algebraic and DASPK will compute guu
′ automatically,

via finite difference approximation or automatic differentiation.

When solving the sensitivity equations with DAEs, we note that the sensitivity equations

are always linear with respect to the sensitivity variables. Therefore, we can evaluate guu
′ = 0

16

only for the state equations if the staggered method is used. The sensitivities can be solved

in one Newton iteration with initial guess u′ = 0. In DASPK3.0, we have provided several

options, which correspond to the options for evaluation of the sensitivity residuals, to calculate

guu
′. Even if there are no sensitivities in the system, the flag corresponding to the evaluation

methods must be set if the evaluation of guu
′ is necessary. Note that for the simultaneous

method, guu
′ = 0 must be evaluated for each sensitivity to get the correct solution.

Which variables should be fixed is problem-dependent. For some mechanical systems, such

as trajectory prescribed path control (TPPC) problems [2], it is desirable to fix the differential

variables related to the path constraints in the computation of consistent initial conditions. If

only a subset of the differential variables are fixed in (16), the iteration matrix (22), which is

required in DASPK, may not be a good approximation to the exact iteration matrix. This is

unlike the index-1 system where we can always use (22) no matter which variables are fixed.

For an index-2 system like (16), where a subset of the variables are fixed, the iteration matrix

(25) becomes

hJ =





I I − hfu2 −hfv

0 gu2 0



 . (29)

where u = (u1, u2) and u1 is fixed. Note that (29) cannot be approximated by (25) no matter

how small h is. We observed in numerical experiments that the Newton iteration can fail with

the approximate iteration matrix (25). In DASPK3.0, we evaluate the Jacobian (29) instead

of (25), via finite difference approximation or automatic differentiation, if only a subset of the

differential variables are fixed. If the Jacobian is provided by the user, (29) should also be

calculated.

To sum up, the initialization algorithm for Hessenberg index-2 problems is similar to that

for index-1 problems. Which variables should be fixed is determined by both the structure

of the system and the available information. Although our algorithm for index-2 problems is

also valid for index-1 problems, we recommend fixing all of the differential variables and using

the initialization algorithm of [4] for most index-1 problems. For an index-2 problem, if the

constraints are satisfied, we recommend fixing all of the differential variables and using (27)

to compute the derivatives and algebraic variables. For a mixed index-1 and index-2 problem,

if the constraints related to the index-2 variables are satisfied, we recommend fixing all of the

differential variables. Otherwise we can fix only a subset of the differential variables, or do

no fixing at all. Note that this will alter the initial values of the differential variables which

may not be desirable depending on the problem.

If only a subset or none of the differential variables are fixed for an index-2 system, we

17

use a two-step process to improve the results for the consistent initial conditions: a predictor

step followed by a corrector step. In the predictor step, we calculate a consistent u′, u and v

with no fixing or partial fixing. After the predictor step, u is often close to u0 and satisfies the

constraint g(u) = 0. However, v is usually far away from v0 because of a small value of h, and

the derived constraint gu(u)f(t, u, v) is also severely violated. In the corrector step, we fix all

of the differential variables u, and use (27) to compute u′ and v again. In the corrector step,

we have reset the values of the derivatives either to zeros or to their original values (the initial

guess before the predictor step), depending on whether the system is linear or nonlinear with

respect to the algebraic variables.

In our implementation, a linesearch backtracking algorithm [4] has been used to improve

the robustness of the Newton algorithm for the initial condition calculation.

4.3 How to compute consistent initial conditions in DASPK3.0

We have modified the DASPK2.0 [4] code to include initialization for index-2 problems. We

assume here that the reader is familiar with the use of DASPK2.0 [4]. To be compatible, we

have retained all the options from DASPK2.0. By specifying the input parameter INFO(11),

DASPK3.0 will solve initialization problems with different approaches.

If the initial values are already consistent, set INFO(11) = 0. This is the default.

For most problems (index-0, index-1, or index-2 where it is not essential to satisfy the

derived constraints), use one of the following options depending on which initial conditions

have been specified in the problem:

• INFO(11) = 1. Solve initialization problem I: Given Yd, calculate Ya and Y ′d . Yd is

fixed during the initial condition calculation. This option is applicable for index-1

problems, and for Hessenberg index-2 systems if the original constraints are satisfied.

For Hessenberg index-2 systems, it will yield consistent initial conditions that satisfy

the derived differentiated constraint if the system is linear with respect to the algebraic

variables, and the initial guess for y′ is set to 0. If this option is specified, the user must

identify for DASPK the differential and algebraic components of Y (for state variables

only). This is done by setting (for I=1,...N)

– IWORK(40+I) = +1 or +2 or +3 if Y(I) is a differential variable, and

– IWORK(40+I) = −1 if Y(I) is an algebraic variable.

18

• INFO(11) = 2. Given Y ′, calculate Y . Y ′ is fixed during the calculation. This option is

applicable for any problem as long as the resulting initialization problem is well-posed.

• INFO(11) = 3. Given Y and Y ′, calculate a new Y and Y ′. This option is applicable

for any problem. INFO(11)=1 and INFO(12)=2 can be transformed into this option by

setting IWORK properly. Algebraic variables are never fixed for this option. A subset

of differential variables or their derivatives can be fixed by setting:

– IWORK(40+I) = +1 if Y(I) is a differential variable, and both Y(I) and Y′(I) are

free;

– IWORK(40+I) = +2 if Y(I) is a differential variable, and Y(I) is fixed but Y′(I)

is free;

– IWORK(40+I) = +3 if Y(I) is a differential variable, and Y′(I) is fixed but Y(I)

is free;

– IWORK(40+I) = −1 or −2 if Y(I) is an algebraic variable.

For index-2 problems where it is important that not only the original constraint but also

the derived constraint be satisfied at the initial values, the user must specify which equations

are index-2 constraints so that Jacobian (28) can be used. This can be done by setting

• IWORK(40+N+I) = 1, if the I-th equation is an index-2 constraint;

• IWORK(40+N+I) = 0, otherwise.

There are two options for solving this type of initialization problem, depending on whether

the system is linear with respect to the algebraic variables:

• INFO(11) = 4. This option is applicable for systems that are linear with respect to the

index-2 algebraic variables.

• INFO(11) = 5. This option is applicable whether or not the system is linear with

respect to the index-2 algebraic variables. The user must specify which method is used

to evaluate guu
′ by setting INFO(20) correctly. We will discuss how to set INFO(20) in

Section 7.

Option INFO(11)=5 is available only for the staggered method, where the state variables are

solved first and then the sensitivity variables. It might not work effectively for the simulta-

neous method.

19

5 New features of DASPK3.0

Apart from the initialization algorithm, we have incorporated several other new features for

sensitivity analysis into DASPK3.0.

5.1 Error test and convergence test

In DASPKSO [12], the state variables and sensitivity variables are considered as one whole

vector when the error or residual norm is computed. The norm that DASPK uses is a weighted

root mean square norm (WRMS), given by

||v|| =

√

√

√

√

√(1/NEQ)
NEQ
∑

i=1

(vi/WTi)2,

where NEQ is the number of equations andWTi = RTOLi|Yi|+ATOLi. If the number of state

variables is NY and the number of sensitivity variables is NP, NEQ will be (NP+1)·NY. When

NP is large and partial error control is used (excluding the sensitivity variables), the norm

for the state variables will be reduced by a factor of 1/(NP+1), which is inappropriate for the

error and convergence tests. Even with full control (the sensitivity variables are included),

the norm of the state variables will be affected by the norm of the sensitivity variables. Each

sensitivity component also affects the others.

In DASPK3.0, we evaluate the norm separately for the state variables and for the sensitiv-

ities with respect to each parameter. This does not increase the computational work because

the sum is over only NY variables instead of NEQ variables. For the error and/or convergence

tests, we choose the largest one among all the norms. This also makes it easier to do partial

error control.

For most problems we have tested, the results of partial error control, which excludes the

sensitivities from the error tests, and full error control, which includes the sensitivities in the

error tests, are almost the same. However, partial error control can speed up the computation.

If you have no idea on the error tolerance of the sensitivity variables or the accuracy of the

sensitivity variables is less than that of the state variables, it may be advantageous to use

partial error control. In the convergence tests of the Newton iterations, all of the variables

must be included in the test to get a reliable result.

20

5.2 New implementation of Krylov method

In DASPKSO [12], the iteration matrix is approximated by its block diagonal in the Newton

iteration for the direct method, because the error matrix is nilpotent. In the Newton-Krylov

iteration, the matrix-vector product in (4) is approximated via a difference quotient on the

functions. Therefore, the iteration matrix J of (9) can be used instead of its block diagonal

part. For example, for the ith sensitivity equation, we have

(Av)i = Jivy + Jvsi
'

Fi(t, Y + σv, α(Y + σv) + β, p)− Fi(t, Y, αY + β, p)

σ
, (30)

where Y = (y, s1, ..., snp
), J = αFy′ + Fy, Ji =

∂J
∂y
si +

∂J
∂pi
, Fi = Fy′s′i + Fysi + Fpi

is the

ith sensitivity equation, and v = (vy, vs1 , ..., vsnp
). This has been implemented in DASPKSO

[12]. The matrix-vector products in (30) require the evaluation of the sensitivity equations,

which is usually more expensive than the evaluation of the state equations. Since the state

variables and sensitivity variables are solved simultaneously in DASPKSO, the length of

an orthonormal basis of the Krylov subspace for the coupled system is NEQ=(NP+1)*NY.

Therefore the storage of the orthonormal basis requires more space than for the state variables.

Although this scheme may be better for vector computation, it may not be advantageous for

parallel computation because we must parallelize the GMRES iterative method. It is also

difficult to implement the staggered corrector method.

For the staggered corrector method, only Jvsi
is left in (30) for Newton iteration of the

sensitivity equations. Although (30) can still be used to evaluate Jvsi
, it takes no advantage of

the reduced structure. We can evaluate Jvsi
directly via directional derivative finite difference

approximation

Jvsi
= (αFy′ + Fy)vsi

'
F (t, y + σvsi

, α(y + σvsi
) + β, p)− F (t, y, αy + β, p)

σ
, (31)

where F (t, y′, y, p) are the state equations. The function evaluations in (31) involve only the

state equations, and no evaluations of sensitivity equations are required during the linear

iteration for sensitivity variables. Because there is no coupling between different sensitivity

variables, the linear iteration for each sensitivity equation can be done separately, which

allows us to split the large linear system in (30) into several small ones and reduce the length

of each orthonormal basis to NY.

For the simultaneous corrector method, we can approximate the Newton-Krylov iteration

matrix by its block diagonal as for the direct method. Then (31) can be used to calculate

the matrix-vector product. This implementation not only sharply reduces the storage needed

21

for the orthonormal basis in the case of a large number of sensitivity parameters, but also

improves the computational efficiency. Parallel computation is also easy to implement.

In the above discussion, we assume that evaluation of the sensitivity equations is more

costly than evaluation of the state equations, which is true for most problems because the

evaluation of the sensitivity equations requires the Jacobian information from the state vari-

ables. However, for a large number of sensitivity parameters, the Jacobian is evaluated only

once for all the sensitivities, and the average cost for each sensitivity may be less than for the

state equations. This inspires us to evaluate the Jvsi
directly by matrix times vector instead

of by finite difference. For problems with a large number of sensitivity parameters (larger

than the average number of non-zero elements in a row of the Jacobian) and where the state

equations are very costly to evaluate, the computation time can be sharply reduced by the

matrix times vector method.

5.3 Implementation of staggered direct method

The staggered direct method has been implemented in the DASAC code by Caracotsios and

Stewart [5]. In DASAC, system (8) is transformed into

Jsi(n+1)
=

(

−
∂F

∂y′n+1

β −
∂F

∂pi

)

, (32)

where βi = s′
(0)
i(n+1)

− αs
(0)
i(n+1)

. To solve a linear system in this way requires extra storage

for the matrix ∂F/∂y′n+1. Moreover, this implementation often fails when the matrix J is

ill-conditioned. This is because the right-hand side of equation (32) can be very large and

can introduce large round-off errors when J is ill-conditioned [11].

In DASPK3.0, the following linear system is solved for the sensitivities:

Jδ = Js
(0)
i(n+1)

+
∂F

∂y′n+1

β +
∂F

∂pi

, (33)

where δ = s
(0)
i(n+1)

− si(n+1)
. The right-hand side of (33) is easy to obtain in DASPK3.0 by

the function evaluations of the sensitivity equations. It does not require any extra storage or

special handling. What is important is that it works well for ill-conditioned problems. The

reason is because the right-hand side of equation (33) is usually much smaller than that of

equation (32) for a successful step (which means the predictor value s(0) is close enough).

22

5.4 Implementation of staggered corrector method

The staggered corrector method has been implemented in DASSL in [7] and compared with

the simultaneous corrector method. In the following, we discuss how it is implemented in

DASPK3.0.

The direct method in DASPK is virtually identical to DASSL. Therefore, it is not difficult

to implement the staggered corrector method. We use almost the same algorithm as Feehery

et al. have done for the DASSL code [7]. However, it is more difficult to modify DASPK

for the staggered corrector method because the DASSL routine has been split into several

smaller ones in DASPK. Several features are designed to minimize wasted computations due

to corrector convergence failure or error test failure. An error test is performed on the state

variables before the sensitivity corrector iteration is started, because an error failure on the

state variables will definitely cause an error test failure in the whole system. Because we use

the separate evaluation of the norms (see Section 5.1), the error test for the state variables is

performed only once during a one step integration. Our new implementation of the Krylov

method for the sensitivity analysis in Section 5.2 is similar to that of the direct method.

Therefore the implementation for the staggered corrector is almost a copy from the direct

method.

We also used different methods from [7] to evaluate the sensitivity residuals. The direc-

tional derivative option in [12] is retained as one of the methods. Where ADIFOR is available,

ADIFOR with the seed matrix option or with the matrix-vector product only option is used

to compute the sensitivity residuals. The matrix times vector method is also available as an

option: first the matrix (∂F/∂y′, ∂F/∂y, ∂F/∂p) is computed after convergence of the cor-

rector iteration for the state variables; then the matrix times vector is used to evaluate the

sensitivity residuals during the iteration for the sensitivity variables.

The overall algorithm for the staggered corrector method is as follows. First we do the

corrector iteration only for the state variables. The iteration is continued until it converges

or it reaches a maximum number of iterations. If it does not converge within the maximum

number of iterations, the iteration matrix is reevaluated and refactored if the iteration returns

with a recoverable error. Otherwise the iteration will return with a convergence error and the

integration may start again with a reduced time step. If the iteration for the state variables

converges, the error test is performed on the state variables. If the error test fails, the iteration

will return with an error test failure. After the state variables pass the convergence test and

error test, we compute residuals for the sensitivity equations. The residuals for the state

23

variables are also updated for the Krylov method or if finite-differencing is used to compute

the sensitivity equations. Then the sensitivity corrector equation is solved in the same manner

as the state variable corrector equation. Provision is made to update and refactor the iteration

matrix if the corrector iteration is not converging. After the sensitivity variables have passed

the corrector convergence test, an error test may be performed on the sensitivity system if

full-error control is selected. If this test fails, the step size is reduced and/or the corrector

matrix refactored and the step is attempted again.

For the Krylov method, the nonlinear system (8) is solved by full Newton iteration. For

a linear system, it should yield the results in one iteration. Therefore, the staggered di-

rect method (or staggered Krylov method) is essentially the same as the staggered corrector

method in this case.

In practical problems, evaluation of the residuals for the sensitivity variables is usually

accompanied by evaluation of the residuals for the state variables. This is especially true when

the ADIFOR package is used to compute the sensitivity equations. Therefore, the residuals for

the state variables may also be evaluated during the sensitivity corrector iterations, although

it is not necessary. This is why the staggered corrector method may be slower than the

simultaneous corrector method in some special cases. In most cases, even if the residuals

for the state variables are evaluated during the sensitivity corrector iteration, the staggered

corrector method has better performance than the simultaneous corrector method. We will

provide some examples to demonstrate this in Section 9.

Apart from using the staggered method in regular integration, we also use it in the ini-

tialization algorithm of Section 4.

6 ADIFOR and DASPK3.0

ADIFOR is an automatic differentiation tool for FORTRAN programs, developed recently

at Argonne National Laboratory and Rice University [1]. It adopts a hybrid approach to

computing derivatives that is generally based on the forward mode, but uses the reverse mode

to compute the derivatives of assignment statements containing complicated expressions. The

forward mode acts similar to the usual application of the chain rule in calculus. Derivatives of

the intermediate variables with respect to input variables are computed and are propagated

forward through the computational stages. The reverse mode is based on the adjoint quantities

representing derivatives of the output with respect to intermediate variables. The adjoints

24

are computed at each node of the computational graph. They are propagated by reversing

the flow of the program and by recomputing intermediate values that have a nonlinear impact

on the output.

ADIFOR requires the user to supply the FORTRAN source code for the function value

and for all lower level subroutines as well as a list of the independent and dependent vari-

ables in the form of parameter lists or common blocks. ADIFOR can determine which

other variables throughout the programs are to be differentiated, and augments the orig-

inal code with derivative statements. The augmented code is then optimized by elimi-

nating unnecessary operations and temporary variables. The FORTRAN code generated

by ADIFOR requires no run-time support and therefore can be ported between different

computing environments. More information can be obtained via the World Wide Web

(http://www.mcs.anl.gov/Projects/autodiff).

In this section, we study how to incorporate ADIFOR-generated derivatives into DASPK3.0.

First, we list the places that require derivative evaluations

• Jacobian evaluation for the direct method,

• matrix-vector product for the Krylov iteration,

• Jacobian evaluation for incomplete LU factorization (ILU) preconditioner,

• evaluation of sensitivity equations in DASPKSO.

Where ADIFOR is available to the user, it might be better to replace all the finite differencing

with the ADIFOR-generated routines. However, there is a trade-off when we consider the

efficiency and accuracy of the computations.

The ADIFOR-generated routine not only computes the derivatives but also the original

functions. To compute one matrix-vector product in an ADIFOR-generated routine requires

at least one evaluation of the original function and possibly more than one evaluation of

the derivatives. But the matrix-vector product approximated by first-order finite difference

requires only one evaluation of the original functions. Since the finite difference approximation

in the matrix-vector product for the Krylov iteration has incorporated the scaling into its

implementation, it yields an acceptable result in most cases. Because the matrix-vector

product is used in each linear iteration in the Krylov method, if we use the ADIFOR-generated

routine to replace it, it will take much more computation time. This is why we do not use it

in DASPK3.0.

25

Although evaluation of the sensitivity equations is also a matrix-vector product in ADI-

FOR, the scaling problems in (11) are not easily resolved. We tried to incorporate scaling for

the finite difference approximation of sensitivity equations but failed. For badly-scaled prob-

lems, the finite difference approximation cannot give an acceptable result. We recommend

using ADIFOR to evaluate the sensitivity equations. Even for some well-scaled problems, the

ADIFOR-generated routine has better performance in terms of efficiency and accuracy than

the finite difference approximation.

The ADIFOR-generated Jacobian has proven to be more efficient and accurate than the

finite difference method. We use it in DASPK3.0.

There are several options in the ADIFOR script file to generate derivative code:

• matrix-vector product only, invoked with AD SCALAR GRADIENTS = true;

• seed matrix input, invoked with AD FLAVOR = dense;

• sparse linear combination (SparsLinC), invoked with AD FLAVOR = sparse;

Each option works better than others under certain circumstances. The matrix-vector product

option has the best performance if only one matrix-vector product is computed. This option

is also chosen for parallel computation if you do not want to modify the ADIFOR-generated

routine for parallel use. If more than one matrix-vector product has to be computed, the

seed matrix option works better than the matrix-vector product option. For the Jacobian

evaluation, the SparsLinC option has the best performance for a large sparse matrix. If the

Jacobian is a dense matrix or a banded dense matrix (here a matrix is called dense matrix

if it has at least 50% of nonzero elements), the seed matrix option works better than the

SparsLinC option.

For the evaluation of the sensitivity equations, we offer three options with ADIFOR. The

matrix-vector product only and seed matrix options have been discussed in the last paragraph.

Another option provided is direct evaluation of the sensitivity equations by matrix times

vector: first we evaluate the Jacobian (∂F/∂y, ∂F/∂y ′, ∂F/∂p) by ADIFOR, usually with

the SparsLinC option; then we evaluate

∂F

∂y
si +

∂F

∂y′
s′i +

∂F

∂p

by two matrix-vector products and two vector additions. This option can be more efficient

than the other two options for the staggered corrector method when F (t, y, y ′, p) is expensive

to evaluate.

26

To compare the costs of the different methods for sensitivity evaluations, we consider the

problem of evaluating the Jacobian J of a vector function F with respect to an n vector of

variables y. The cost of evaluation of the function F is COST(F). The cost of evaluating J

is related to COST(F) by

COST(J) ' a · n · COST(F),

where a = 3 for the basic forward mode of automatic differentiation. If only a product of the

Jacobian with some vector p is required, the cost of J · p is

COST(J · p) ' a · COST(F).

If the sparse forward mode (with SparsLinC option) is used in automatic differentiation, the

cost satisfies

COST(J) ' a · n′ · COST(F),

where n′ is the maximum number of nonzero entries in any row of the Jacobian. Suppose the

average number of nonlinear iterations is ni, and the number of sensitivity parameters is np.

Then the cost of ADIFOR with the seed matrix option includes np matrix-vector products

for each nonlinear iteration. The total cost can be approximated by

ninp · a1 · COST(F).

The cost of direct evaluation by matrix times vector method includes the cost of evaluation

of the Jacobian and the two matrix times vector operations, which is

a2(m
′ + n′p) · COST(F) + ninpm

′n,

where m′ and n′p are the maximum number of nonzero entries in any row of the Jacobian

(∂F/∂y, ∂F/∂y′) and (∂F/∂p) respectively. We use a1 and a2 here to distinguish the coef-

ficients for two different approaches because a1 is usually much larger than a2. The matrix

times vector method is better when

(m′ + n′p)a2 · COST(F) + ninpm
′n < ninpa1 · COST(F),

which results in

np >
(m′ + n′p)a2

nia1

, (34)

and

COST(F) >
ninpm

′n

ninpa1 − (m′ + n′p)a2

. (35)

27

Equations (34) and (35) imply two conditions for the matrix times vector method to be

advantageous over the seed matrix option. First np must be large enough. For example, if

a1=a2, n
′
p = np, and ni = 2, then np > m′, which means the number of sensitivity parameters

must be larger than the maximum number of nonzero entries in any row of the Jacobian

(∂F/∂y, ∂F/∂y′). The second condition is that the evaluation of the function F must be

costly enough, which is defined by (35).

For the evaluation of the Jacobian matrix, we assume the user is familiar with DASSL and

the previous version of DASPK. The Jacobian matrix is required only for the direct method.

INFO(5) in DASPK is an indicator for which method is used:

• INFO(5)=0, finite-differencing is used;

• INFO(5)=1, Jacobian is evaluated by user-supplied routine JAC;

• INFO(5)=2, ADIFOR with the SparsLinC option is used;

• INFO(5)=3, ADIFOR with the seed matrix option is used.

The evaluation method of the Jacobian for the calculation of the consistent initial condition

is different from that for the integration inside DASPK. When the Jacobian is supplied by

the user, we provide a flag in JAC for the user to determine what kind of Jacobian should be

provided. The user can see the documentation of DASPK3.0 for more details. Because the

ILU preconditioner for the Krylov method works efficiently only for a sparse Jacobian matrix,

we use ADIFOR with the SparsLinC option to evaluate it.

We have provided several script files in our documentation on how to generate the deriva-

tive routines via ADIFOR. One problem when using ADIFOR in DASPK3.0 is that the user

supplied vector RPAR(*) may sometimes depend on Y or YPRIME, which could generate

different argument lists in the derivative routine. We handle this problem by adding an in-

dicator of whether or not there is a data dependence between RPAR and Y or YPRIME. If

there is, then IWORK(38) is used to store the dimension of RPAR.

One thing we should consider when we select ADIFOR options is the requirement for

work space. Usually, the matrix-vector product only option requires the least extra work

space among the three options. The SparsLinC option requires some extra integer work

space (about 3*NY) to store the pointers. The seed matrix option, however, requires huge

extra temporary work space. Suppose the bandwidth of the Jacobian is L=MU+ML+1.

For Jacobian evaluation, it needs L*(3*NY+IWORK(38)); for sensitivity evaluation, it needs

28

NPAR*(3*NY+IWORK(38)). When L or NPAR is large, this temporary work space domi-

nates the work space for other uses. We must be careful when we use the seed matrix option

for machines with less memory.

All of the ADIFOR-generated routines require the support of the ADIFOR library, which

is part of the ADIFOR package [1]. Since ADIFOR users must get the license first (free for

academic use) from the developer, we do not provide the ADIFOR library as part of the

DASPK packages. We have designed DASPK3.0 in such a way that it is stand-alone and

independent of other libraries. However, incorporating the ADIFOR features (especially the

SparsLinC option) into DASPK must include some routines defined in the ADIFOR library.

For convenience of the user, we provide dummy routines for users that do not have access to

the ADIFOR library.

7 Using DASPK3.0 for sensitivity analysis

Since DASPK2.0 [4] adds some options for consistent initial condition computation and error

control, the INFO(*) for DASPK3.0 is totally different from that of DASPKSO. We assume

here that the reader is familiar with the use of DASPK2.0 [4]. DASPK2.0 [4] used 18 of the

total length of INFO(*). The sensitivity options of DASPK3.0 start from the 19-th.

• INFO(19) is used as the sensitivity toggle.

– INFO(19)=0. No sensitivity is evaluated (default).

– INFO(19)=NP. There are a total of of NP sensitivity parameters. There are two

types of sensitivity parameters: the parameter appears in RES and the parameter

appears only in the initial conditions. To evaluate the sensitivity equation, only

the former type of parameters need to be stored for later use. They are stored

in SENPAR(*) (this array is added into DASPK3.0). The number of this type of

parameter is specified in INFO(22).

• INFO(20) allows several options for computing the sensitivity equations. Options for

calculating guu
′ for the initialization of index-2 systems are also available via INFO(20).

– INFO(20)=0. Central differencing is used(default).

– INFO(20)=1. One-sided forward differencing is used.

29

– INFO(20)=2. The residual is computed by the user-supplied routine RES. The

parameter IRES in the RES routine is used to determine whether to compute the

sensitivities or not. The user must specify in the RES routine as follows

if (ires == 0) then compute residuals for the state equations;

else if (ires == 1) then compute residuals for both state and sensitivity equa-

tions;

else if (ires == 2) then compute residuals for the state equations with guu
′ = 0

in place of g(u) = 0 (only for index-2 initialization).

end if

– INFO(20) = 3. The residuals of state and sensitivity equations are computed by

ADIFOR with the seed matrix option.

– INFO(20) = 4. The residuals of state and sensitivity equations are computed by

ADIFOR with the matrix-vector product option.

– INFO(20) = 5. The residuals of sensitivity equations are computed by the matrix

times vector method. This option is only for the staggered corrector method,

i.e., when INFO(25)=1. First the matrices are computed by ADIFOR. Then the

residuals are evaluated by the matrix times vector method.

If the ADIFOR option (INFO(20)>2) is chosen, the user must specify IWORK(38)

regarding whether RPAR depends on Y, YPRIME or SENPAR. If RPAR is used to

pass values of Y, YPRIME or SENPAR between procedures, set IWORK(38) to be the

dimension of RPAR(*). Otherwise set IWORK(38)=0.

• INFO(21) acts as a perturbation factor option. This option is used only when INFO(20)<2

(finite difference options for sensitivities).

– INFO(21)=0 (default). The default value 1.0D-3 is used.

– INFO(21)=1. The user must supply the desired value in RWORK(16).

• INFO(22) stores the number of parameters that appear in the RES routine. This is

usually the size of SENPAR(*).

• INFO(23) is used as an error control option for the sensitivity variables.

– INFO(23)=0. The sensitivities are included in the error test.

– INFO(23)=1. The sensitivities are excluded from the error test.

30

Note that all variables will be included in the Newton convergence test.

• INFO(24) is used if the sensitivity of a derived quantity is to be computed. In addition

to computing the sensitivities of the solution and its derivative with respect to the

parameters, the user may want to compute the sensitivity of a quantity Q(t, y, y ′, p)

with respect to the parameters. To do this, the user can call the auxiliary routine

DSENSD

CALL DSENSD(QRES, NEQ, T, Y, YPRIME, QSEN, INFO,

* RWORK, IWORK, RPAR, IPAR, SENPAR)

in between calls to DASPK to find the sensitivity of the derived quantity Q at the

output points of DASPK. The user can refer to the documentation of DSENSD for

more details.

– INFO(24)=0 (default). DSENSD is not called.

– INFO(24)=NQ, where NQ is the dimension of the vector function Q if DSENSD

is called.

• INFO(25) is used for sensitivity method options. This option applies also to the initial

condition calculation.

– INFO(25)=0 (default). Simultaneous corrector method is used.

– INFO(25)=1. Staggered corrector method is used.

– INFO(25)=2. Staggered direct method is used.

The work space required by DASPK3.0 is different from that of DASPK2.0 or DASPKSO if

sensitivities are computed or the ADIFOR options are selected. The user can refer to the

documentation of DASPK3.0 for details.

In DASSL and DASPK, there is an option for constraints on variables which are always

nonnegative (or non-positive). When we combine the code with sensitivity analysis, it is un-

realistic for us to tell which sensitivities are always nonnegative (or non-positive). Therefore,

the constraints at the initial conditions and each time step are enforced only on the state

variables, not on all the variables as in DASPKSO. The user can specify constraints for state

variables only.

DASPK3.0 is compatible with the previous version of DASPK, i.e., a previous code that

works under DASPK2.0 should work well under DASPK3.0 when the INFO array is increased

31

to 30 and is set to zero after the 18th element. However, DASPK3.0 is not compatible

with DASPKSO. DASPK3.0 has a big difference from DASPKSO in storing the sensitivity

parameters. We use SENPAR to store the sensitivity parameters separately in DASPK3.0.

8 Parallel implementation of DASPK for

sensitivity analysis

Several parallel implementations for sensitivity analysis of DAEs have been compared in [15].

In this section, we describe the parallelization in DASPK3.0. Although all the tests in [15] are

for DASSL with the direct method, the comparative results are similar for DASPK3.0 with

both the direct method and the Krylov method with the new implementation described in

Section 5.2. We have experienced that the distributed parameter only (DPO) approach of [15]

is also the fastest for DASPK3.0. Therefore, we use this method in the parallel implementation

of DASPK.

The implementation of DPO in [15] requires no modification to the DASPK code. However,

it does require the user to distribute the parameters to each processor. The DPO method

in [15] requires the user to distribute the parameters to each processor before calling the

DASPK program, which is unrealistic or a big burden for an inexperienced user. Because

the distribution is done outside of DASSLSO in [15], it is difficult to have centralized control

over the computations, which is needed if we require to have the same stepsize for all the

processors. Another difficulty in locating the equi-distribution outside of DASPK is that

the user must define a different problem (RES in DASPK) for sensitivity analysis in each

processor, which is inconvenient and error-prone.

Our implementation distributes the sensitivity parameters inside the DASPK code so as

to reduce the burden on the user. To balance the workload between processors, we allocate

the parameters randomly to each processor: if we have NP processors and NPAR parameters,

N=NPAR/NP, we distribute parameter numbers
{

j, ..., j + i ∗ NP, ..., j +N ∗ NP, if j ≤ mod(NPAR,NP)

j, ..., j + i ∗ NP, ..., j + (N − 1) ∗ NP, if j > mod(NPAR,NP).
(36)

to the j-th processor. Each processor computes the state variables locally, and the Jacobian

matrix is also computed and factorized locally when needed. To minimize the storage and

memory requirements in each processor, we assume that each processor has distributed mem-

ory, i.e., each processor has a local value of the same variable. Therefore, the work space

32

in each processor can be reduced to approximately 1/NP of the total work space. Since the

sensitivities are independent of each other, each processor can work independently without

communicating with the others.

In our implementation, we initially parallelized all the loops related to computation of

Y(*) and YPRIME(*). The values of Y(*) and YPRIME(*) were stored in their original

positions and different processors. This method does not need to redistribute the initial

conditions but requires much recoding from the serial version. In the revised version, we

have removed the sensitivity variables from Y(*) and YPRIME(*) (they may not be adjacent

in each processor), and restored them consecutively right after the state variables in each

processor. However, we did not change other public variables such as RPAR(*), IPAR(*) and

SENPAR(*) in DASPK. In this way, the main body of the code does not require modification

if we set the number of equations NEQ and the number of sensitivity parameters INFO(19)

properly inside DASPK. The initial conditions, however, must be redistributed accordingly

in the first call of the program.

We have attempted to develop a code for which both parallel and serial computation

can run efficiently. We enforce the same stepsize control for all the processors in the parallel

implementation. The communication overhead is very small. In each time step, each processor

may be using different orders of the BDF formulae. Since this implementation requires an

MPI-related routine and the support of the MPI library, which may not be accessible by users

doing serial computation, we provide a dummy routine, which can be linked without involving

the MPI library, for use with serial computation

How to use DASPK with parallel computation

MPI was developed by researchers at Argonne National Laboratory and Mississippi State

University [6]. Programs written with MPI are portable between different machines. A

tutorial on how to use MPI to write parallel programs is given in [9]. The MPI packages,

including the library and running examples, can be freely downloaded from

http://www.mcs.anl.gov/mpi

We assume here that the reader has a basic knowledge of MPI.

When MPI starts, it calls set-up routines to assign an identity to each processor. The

identities are generated by MPI and form a consecutive integer array that starts from 0.

33

For example, if we have 10 processors, MPI will generate identities 0,1,...,9 and assign them

to each processor randomly. The identity is used in DASPK3.0 to assign different sensitivity

parameters to each processor as (36). Usually three MPI set-up routines must be called before

calling DASPK3.0 to do parallel computation:

CALL MPI_INIT(IERR)

CALL MPI_COMM_RANK(MPI_COMM_WORLD, MYID, IERR)

CALL MPI_COMM_SIZE(MPI_COMM_WORLD, NUMPROCS, IERR)

where MYID is the identity of the current processor, and NUMPROCS is the number of

processors that participate in the parallel computing.

We have added two more parameters in DASPK specifically for parallel computation with

MPI methods. The user must set them to a correct value before calling DASPK3.0.

• INFO(26) – identity of the processor. The default value is 0, which is for serial compu-

tation.

• INFO(27) – number of processors participating. The default value is 0 and it is altered

to 1 by DASPK.

For MPI users, INFO(26) is MYID, and INFO(27) is NUMPROCS, both available from the

set-up routines of MPI. DASPK3.0 can run on serial machines by setting INFO(26)=INFO(27)=0.

9 Numerical Experiments

In this section, we test and justify our software with several examples. All tests were run on

an SGI O2 workstation. The following quantities are used to compare different methods:

METH Integration method

NSTP Number of time steps used

NRES Number of calls to residual subroutine

NSE Number of sensitivity evaluations

NJAC Number of Jacobian evaluations

NNI Number of nonlinear iterations

NLI Number of linear iterations (only for Krylov method)

CPU The total cpu time taken to solve the problem

34

The integration methods we use include the direct method (D) and Krylov method (K).

The integration methods for the sensitivity equations include the staggered corrector method

(ST), the staggered direct method (SD) and simultaneous corrector method (SI). Therefore we

use STD to represent the staggered corrector direct method, STK to represent the staggered

corrector Krylov method, SID to represent the simultaneous corrector direct method, SIK

to represent the simultaneous corrector Krylov method, and SDK to represent the staggered

direct Krylov method.

The first example models a multi-species food web [4], in which mutual competition and/or

predator-prey relationships in the spatial domain are simulated. Specifically, the model equa-

tions for the concentration vector c = (c1, c2)T are

c1t = f1(x, y, t, c) + d1(c
1
xx + c1yy),

0 = f2(x, y, t, c) + d2(c
2
xx + c2yy),

with

fi(x, y, t, c) = ci(bi +
2
∑

j=1

aijc
j).

The coefficients aij, bi, di are

aii = −1, i = 1, 2;

a12 = −0.5 · 10
−6, a21 = 10

4;

aij = e, i > p and j < p;

b1 = 1 + αxy + β sin(4πx) sin(4πy)) = −b2,

d1 = 1, d2 = 0.05,

α = 50, β = 100.

The domain is the unit square 0 ≤ x, y ≤ 1 and 0 ≤ t ≤ 10. The boundary conditions are

of Neumann form with normal derivative equal to 0. The PDEs are discretized by central

differencing on anM byM mesh. We have takenM=20. Therefore the resulting DAE system

has size NEQ = 2M 2 = 800. The tolerances used were RTOL=ATOL=10−5.

For sensitivity analysis, α and β were taken as the sensitivity parameters. The initial

conditions were taken as

c1 = 10 + (16x(1− x)y(1− y))2,

c2 = −(b2 + a21c
1)/a22,

which nearly satisfy the constraint equations. The initial conditions for the sensitivity vari-

ables were taken as zero, which are not consistent. We tested our problem with both the

35

direct and Krylov methods. For the Krylov methods, we used the block-grouping precon-

ditioner (which is included in the package DASPK2.0[4]). To eliminate the effect of finite

differencing when comparing different methods, we used the ADIFOR option in DASPK3.0

to generate the Jacobian matrix (only for direct method) and sensitivity equations. Without

setting INFO(11)=1, the integration failed. After setting INFO(11)=1, the consistent initial

conditions were computed quickly for both the direct and Krylov methods. Table 1 shows the

results of the staggered corrector method and the simultaneous corrector method. Full error

control (including the sensitivity variables) was used. Although there were no convergence

METH NSTP NRES NSE NJAC NNI NLI NLIS NETF CPU

STD 312 770 389 45 381 0 0 4 30.84

SID 335 508 508 42 508 0 0 3 36.56

STK 341 2712 353 36 406 732 0 1 22.98

SIK 505 4262 617 47 617 1532 0 9 39.12

STD 128 377 190 42 205 0 0 0 17.90

SID 128 228 228 40 228 0 0 0 18.91

STK 133 1456 147 38 165 329 425 0 11.36

SIK 131 1888 202 38 202 332 697 0 15.47

SDK 133 1442 133 38 165 329 425 0 11.03

STD 128 3589 190 42 187 0 0 0 24.85

SID 128 3240 228 40 228 0 0 0 26.11

STK 133 1442 147 38 165 329 425 0 10.36

SIK 131 1818 201 38 201 332 700 0 14.37

SDK 133 1442 133 38 165 329 425 0 10.12

Table 1: Results for multi-species food web. The upper part is for ADIFOR option with error control

including the algebraic variables. The middle part is for ADIFOR option with error control excluding the

algebraic variables. The bottom part is for the finite difference option with error control excluding the algebraic

variables.

test failures for this problem, the staggered corrector method (ST) performed better than the

simultaneous corrector method (SI).

The finite differencing options for the sensitivity equations were also tested. Because

this problem is badly scaled (c1 has a value of O(106) while c2 has a value of O(10)), finite

differencing does not work well if we choose δi via (12). Selecting δi via (13), finite differencing

works quite well. We used the central difference and ∆ = 10−3 (default value). The results

36

are shown in Table 1.

The next example is the heat equation,

∂u

∂t
= p1uxx + p2uyy,

posed on the 2-D unit square with zero Dirichlet boundary conditions. An M + 2 by M + 2

mesh is set on the square, with uniform spacing 1/(M + 1). The spatial derivatives are

represented by standard central finite difference approximations. At each interior point of the

mesh, the discretized PDE becomes an ODE for the discrete value of u. At each point on

the boundary, we pose the equation u = 0. The discrete values of u form a vector U , ordered

first by x, then by y. The result is a DAE system G(t, U, U ′) = 0 of size (M + 2)× (M + 2).

Initial conditions are posed as

u(t = 0) = 16x(1− x)y(1− y).

The problem was solved by DASPK on the time interval [0, 10.24]. We took M=40 in our

test. To compute the sensitivities, we took 10 sensitivity parameters; p1 and p2 were two of

them. The other 8 are chosen from the initial conditions. The error tolerances for DASPK are

RTOL=ATOL=1.0D-4. For the direct method, we used the ADIFOR option with SparsLinC

to generate the Jacobian. For the Krylov method, we used the incomplete LU (ILU) precon-

ditioner, which is part of the DASPK package. The Jacobian for the ILU preconditioner is

also evaluated by ADIFOR with SparsLinC. The sensitivity residuals are evaluated by AD-

IFOR with the seed matrix option. Table 2 gives the results of the staggered corrector and

simultaneous corrector methods.

Because this problem is well-scaled, finite-differencing in the Jacobian and/or sensitivity

equation evaluation gets a good result. Table 3 shows the results when central differencing

(INFO(20)=0) is used for evaluation of the sensitivity equations. The default perturbation

factor (10−3) is used in evaluating the sensitivity equations. The Jacobian is also evaluated

by finite-differencing. Only the data for full error control are listed.

We tested our parallel code on a cluster of DEC alpha machines in Los Alamos National

Laboratory. Each processor is 533MHz with 64MB memory. We tested the heat equation with

24 sensitivity parameters. The staggered corrector method was used. The synchronization

to achieve the same stepsize on each processor does not introduce much overhead to the

computation.

The next example models a single pendulum

y′1 = y3,

37

METH NSTP NRES NSE NJAC NNI NLI NETF CPU

STD 64 160 65 22 95 0 3 36.20

SID 64 97 97 22 97 0 3 46.35

STK 71 1527 72 18 100 149 1 25.67

SIK 71 1572 102 18 102 184 1 29.40

STD 92 220 103 23 123 0 2 53.58

SID 93 130 130 25 130 0 3 63.63

STK 106 1823 114 24 141 182 2 35.68

SIK 116 1776 155 24 155 213 2 39.06

Table 2: Results for heat equation with ADIFOR evaluation. The upper half is for partial error control

(excluding the sensitivity variables). The bottom half is for full error control.

METH NSTP NRES NSE NJAC NNI NLI NETF CPU

STD 92 2118 103 23 117 0 2 64.07

SID 93 2175 130 25 130 0 3 75.76

STK 107 3917 114 24 143 187 2 38.39

SIK 116 3695 157 24 157 207 2 44.24

Table 3: Results for heat equation with finite difference approximation for sensitivities and full error control.

y′2 = y4,

y′3 = −y1y5,

y′4 = −y2y5 − g,

0 = y1y3 + y2y4,

where g = 1.0. This is an index-two problem. The initial conditions are y1=0.5, y2 =

−
√

p2 − y2
1, y3=10.0, y4=10.0, and y5 = 0.0. The sensitivity parameter is p, which has initial

value p = 1.0. The initial conditions for the sensitivity variables are (0.0, -1.1547, 0.0, 0.0,

0.0). We set all of the derivatives to 0 initially. The tolerance for DASPK was taken as

RTOL=ATOL=10−6. Because

g(y) = y1y3 + y2y4 = −3.660254 6= 0,

the initial conditions are inconsistent. DASPK3.0 failed to solve the problem with the given

initial conditions. The consistent initial conditions must be computed first. We solved it

with the initialization option for index-2 problems. Since the system is linear with respect to

38

METH NPROC NSTP NRES NJAC NNI NLI CPU

1 64 1810 19 91 0 35.33

Direct 2 19.64

4 12.50

8 8.78

1 71 3410 18 100 181 24.59

Krylov 2 71 1935 18 100 159 12.94

4 71 1109 18 100 160 7.43

8 71 696 18 100 156 4.75

Table 4: Results for heat equation with finite difference approximation and partial error control. MPI was

used in all the parallel computations. The same stepsize control was enforced on all the processors.

the algebraic variable y5, we use INFO(11)=4. During the computation, we monitored three

constraints,

g1 = y2
1 + y2

2 − p,

g2 = y1y3 + y2y4,

g3 = y2
3 + y2

4 − (y
2
1 + y2

2)y5 − y2.

Initially, we have

g1 = 0, g2 = −3.66, g3 = 200.866.

We also tried to fix y1, y2 during the experiments on the initial condition computation. The

results are shown in Table 5. Note that if y1 and y2 are not fixed, g1 may be violated. The

METH Fixed y1 y2 y3 y4 g1 g2 g3

STD 0.512 -0.859 11.777 7.016 -1.88e-4 0.0 3.77e-15

y5=0 y1, y2 0.5 -0.866 11.83 6.83 -1.1e-16 0.0 9.28e-13

y5=10 y1, y2 0.5 -0.866 11.83 6.83 -1.1e-16 0.0 9.28e-13

SID 0.512 -0.859 11.777 7.016 -1.88e-4 0.0 3.77e-15

y5=0 y1, y2 0.5 -0.866 11.83 6.83 -1.1e-16 0.0 4.73e-14

y5=10 y1, y2 Failed

Table 5: Results for consistent initial conditions for pendulum problem.

simultaneous method (SID) may fail with some initial values of y5. This is because the SID

39

method uses an approximate Jacobian (the block diagonal of the exact Jacobian) to solve

for the state variables and sensitivities simultaneously. We also observed that the derivative

input y′ affected the output of the consistent initial conditions if no variables are fixed. If the

consistent y′ is input initially, the consistent initial conditions with no fixing are

(y1, y2, y3, y4) = (y10 + 0.0182, y20 + 4.13e
−7, y30 + 1.83013, y40 + 1.83013),

where (y10, y20, y30, y40) are the initial values. The constraints are

g1 = 9.524e
−7, g2 = 0.0, g3 = 1.37e

−8,

which are very close to the outputs when y1 and y2 are fixed. Thus if no variables are fixed, we

strongly recommend using the consistent values of y′. We also calculated the initial conditions

by solving optimization problem (18) with no fixing. The results are

(y1, y2, y3, y4) ' (0.6822,−0.6842, 10.0124, 9.9875). (37)

Although (37) is much closer to the initial guess than the results of Table 5, it may not

be better because the constraint g1 ' 0.0665 is worse than g1 = 1.88e − 4. The initializa-

tion might fail for a tight error tolerance. We have tested and found that it worked when

RTOL=ATOL=10−6 but failed when RTOL=ATOL=10−7. The initialization failed because

of too many convergence failures.

References

[1] C. Bischof, A. Carle, G. Corliss, A. Griewank and P. Hovland, ADIFOR–Generating

derivative codes from Fortran programs, Scientific Programming 1 (1992).

[2] K. E. Brenan, S. L. Campbell, and L. R. Petzold, Numerical Solution of Initial-Value

Problems in Differential-Algebraic Equations, Elsevier, New York, 1989 (second edition,

SIAM 1996).

[3] P. N. Brown, A. C. Hindmarsh, and L. R. Petzold, Using Krylov methods in the solution

of large-Scale differential- algebraic systems, SIAM J. Sci. Comput., 15 (1994), pp. 1467-

1488.

[4] P. N. Brown, A. C. Hindmarsh, and L. R. Petzold, Consistent initial condition calculation

for differential-algebraic systems, SIAM J. Sci. Comp., 19 (1998), pp. 1495-1512.

40

[5] M. Caracotsios and W. E. Stewart, Sensitivity analysis of initial value problems with

mixed ODEs and algebraic equations, Computers and Chemical Engineering, 9:4 (1985),

359-365.

[6] N. Doss, W. Gropp, E. Luck, and A. Skjellum, A model implementation of MPI, Technical

report, Argonne National Laboratory, 1993.

[7] W. F. Feehery, J. E. Tolsma and P. I. Barton, Efficient sensitivity analysis of large-scale

differential-algebraic systems, Applied Numerical Mathematics 25 (1997), pp. 41-54

[8] P. E. Gill, W. Murray and M. A, Saunders, SNOPT: An SQP algorithm for large-scale

constrained optimization, Numerical Analysis Report 96-2, Department of Mathematics,

University of California, San Diego.

[9] W. Gropp, E. Luck, and A. Skjellum, Using MPI: Portable Parallel Programming with

the Message-Passing Interface, MIT press, 1997.

[10] A. C. Hindmarsh, personal communication.

[11] S. Li, L. R. Petzold and W. Zhu, Sensitivity analysis of differential-algebraic equations:

A comparison of methods on a special problem, submitted, 1999.

[12] T. Maly and L. R. Petzold, Numerical methods and software for sensitivity analysis of

differential-algebraic systems, Applied Numerical Mathematics 20 (1996), pp. 57-79.

[13] L. R. Petzold, A description of DASSL: A differential/algebraic system solver, in Scien-

tific Computing, R. S. Stepleman et al. (Eds.), North-Holland, Amsterdam, 1983, pp.

65-68.

[14] L. R. Petzold, J. B. Rosen, P. E. Gill, L. O. Jay and K. Park, Numerical optimal control

of parabolic PDEs using DASOPT, In Large Scale Optimization with Applications, Part

II: Optimal Design and Control, Eds. L. Biegler, T. Coleman, A. Conn and F. Santosa,

IMA Volumes in Mathematics and its Applications, 93, 271-300.

[15] L. R. Petzold and W. Zhu, Parallel sensitivity analysis for DAEs with many parameters,

submitted to Concurrency: Practice and Experience, 1998.

[16] Y. Saad and M. H. Schulz, GMRES: A general minimal residual algorithm for solving

nonsymmetric linear systems, SIAM J. Sci. Stat. Comp. 7 (1986), 856-869.

41

